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ABSTRACT Lying at the intersection of human factors and ergonomics and 
human-computer interaction, human systems integration (HSI) 
is an emerging discipline within the field of systems engineering 
that promises to resolve the challenge of seamlessly teaming 
humans with artificial intelligence-assisted machines. Given 
the expanding role of automation and autonomous systems, 
delineating between both concepts is essential to understanding 
the various challenges and opportunities posed by the integration 
of AI into military tasks and decision-making. Trust, collaboration, 
and familiarity are critical factors in achieving optimal teaming 
results, especially in high-risk and dynamic environments where 
the necessity of preserving human autonomy to operate with 
freedom in unexpected situations is highlighted. In this regard, 
emerging “digital twins” and advanced human-in-the-loop 
simulations present powerful tools to leverage in the HSI context. 
Utilizing a model-based HSI approach, validation metrics, and 
building systemic flexibility, a framework for designing multi-agent 
systems with superior results can be made possible. Standardizing 
integration principles, ensuring interoperability, and improving 
policies for continuous participation in the development of AI-
assisted systems, ensuring user feedback for creating more 
capable interfaces, will prove crucial in overcoming key challenges.



14 

Teaming Humans and Artificial Intelligence-Assisted Machines

INTRODUCTION

Artificial intelligence (AI) refers to systems that demonstrate intelligent behavior by analyzing 
their environment and acting to achieve specific goals with some degree of autonomy. AI 
supports users by performing tasks that usually require human intelligence, such as perception, 
conversation, and decision-making (Kanaan, 2020).  Current and future applications of AI extend 
across a growing range of potential uses, from knowledge-based systems, vision, speech, 
and natural language processing, to robotics, machine learning, and planning. As AI gains an 
increasingly pervasive role in the design and delivery of air and space power, there is a need to 
adopt human systems integration-led approaches to team humans with AI-assisted machines 
(Boy, 2020; 2023b). Human systems integration (HSI) is an emerging discipline in the field of 
systems engineering and lies at the intersection of human factors and ergonomics (HFE) and 
human-computer interaction (HCI). 

HSI applies knowledge of human capabilities and limitations throughout the design, implementation, 
and operation of hardware and software, placing the human – referring to all people involved, such 
as users, operators, and maintainers – as a system on par with the hardware and software systems. 
This paper explores issues of autonomy, trust, familiarity, control, and responsibility relating to AI-
assisted systems that are progressively being embedded into tasks executed by human operators 
and the machines they use. This paper discusses the need for developing model-based HSI and 
robust validation metrics while making use of ‘digital twins,’ which can advance the understanding 
of high-impact human factors in human-machine interaction leading to more useful and usable 
interfaces. Along this journey, achieving systemic flexibility by addressing design gaps is essential 
for multi-agent systems to dynamically deliver user and warfighter requirements in unexpected 
situations.

CROSS-FERTILIZING PRINCIPLES AND CONCEPTS 

Machine automation is generally designed to accomplish a specific set of largely deterministic steps 
to achieve a limited set of predefined outcomes (Hancock, 2017). Both people and machines can 
be automated: Human cognitive functions can be automated through intensive training, standard 
operating procedures (SOPs), tactics, techniques, and procedures (TTPs), for example, in addition 
to the human experience gained over time. On the other hand, machine automation is achieved by 
developing software and algorithms that replace human cognitive functions with machine cognitive 
functions, as is increasingly the case with AI. On the other hand, machine autonomy is essential when 
a system must make a timely and critical decision that cannot wait for external support, such as when 
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systems must operate remotely. Autonomous systems, usually equipped to use embedded data or 
receive it from external sources to make decisions accordingly, can provide functions to operators 
that humans do not naturally have and offer robustness to function without external intervention or 
supervision (Fong, 2018). Consider the example of NASA’s Curiosity and Perseverance rovers, which 
can autonomously maneuver on Mars from one point to another using stereo vision and onboard path 
planning. Machine autonomy is a growing trend in defense, though it is important to note that while 
different levels of autonomy exist, the current generation of machines is not self-directing (Sheridan 
and Verplank, 1978; Fong, 2018). 

This automation-autonomy distinction is vital to address the flexibility challenge in HSI. The idea 
of ‘human autonomy’ remains a significant concern as operators must be able to solve problems 
in unexpected situations using the appropriate combination of creative thought, knowledge, skills, 
organizational and infrastructural resources, and technology. Over the past century, systems have 
been developed with increasing levels of automation, often without sufficiently considering unexpected 
situations. These challenges were left to end-users to resolve as best they could. Usually, in the military 
operational environment, following SOPs and TTPs present dependable solutions for automation 
monitoring – but only in expected situations. In unexpected situations, on the other hand, this can 
be counterproductive and even dangerous. Unexpected situations often demand flexible solutions 
based on human autonomy, deeper knowledge, and problem-solving skills. 

Generally, human and machine automation only works effectively when used in specific contexts – for 
example, in expected situations. Outside these contexts (for instance, in unexpected situations), their 
rigidity can cause unintended results such as incidents or accidents (Boy, 2013b; Endsley, 2018). 
Human operators also tend to become complacent when using automation, primarily because it is 
most frequently used in the contexts in which it has been validated and where it performs more or less 
perfectly. Consequently, in unexpected situations, human controllers must be able to solve unexpected 
problems autonomously, using any available 
physical and cognitive resources, whether 
human, machine, or a combination of both. In 
such situations, human controllers or operators 
require the flexibility to apply an appropriate mix 
of knowledge, skills, and coordination necessary 
to solve problems. Given this, automation that 
places the human controller or operator ‘out 
of the loop’ can be highly inefficient, decrease 
situational awareness, and result in performance 
degradation (Endsley, 2015b). 

Human operators also tend to become 
complacent when using automation, 
primarily because it is most frequently 
used in the contexts in which it has been 
validated and where it performs more or 
less perfectly.

“
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Figure 2.1: A System as a Representation of Human and Machine Agents

Maintaining business continuity during operations in unexpected, uncertain, unforeseen, and unpredictable 
situations demands a highly resilient system. To achieve this resilience, it is vital at the design level 
of systems engineering to ensure redundancy, decentralization, modularity, and interoperability, 
alongside providing distributed decision-making and shared situational awareness. But what do we 
mean by a ‘system’? Adopting a consistent definition for a ‘system’ where humans and machines 
can be considered using a common representation is essential. Most people think of a system as a 
machine, and several definitions have been proposed. A system is “a combination of interacting systemic 
elements organized to achieve one or more stated objectives” (ISO/IEC 15288, 2015). Alternatively, 
a system is “something that does something (an activity, function) and has a structure, which evolves, 
in something (environment) for something (purpose)” (Le Moigne, 1990). As Figure 2.1 illustrates, a 
system and its agents or sub-systems can be humans or machines capable of identifying a situation, 
deciding and planning the appropriate course of action. The modern air force perfectly depicts the 
example of a system of systems composed of human and machine agents or subsystems, where both 
are increasingly equipped with AI. AI-based systems can be purely software and act in the virtual world 
(e.g., voice assistants, image analysis software, search engines, speech, and face recognition systems) 
or be embedded within hardware such as robotics, semi-autonomous vehicles, or other Internet of 
Things applications (Smuha, 2019).

MODEL-BASED HSI AND VALIDATION METRICS

System models that reflect an abstraction of real-world phenomena can allow us to evaluate numerous 
metrics and outcomes to increase our understanding of those systems and their capabilities. Establishing 
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a model-based approach with robust metrics is critical for verifying and validating a system from an 
HSI perspective (Damacharla et al., 2018). Against this backdrop, essential challenges relate to the 
design, analysis, and evaluation of an HSI-centric teaming model to resolve. The development of such 
models must begin with an integrative effort to generate an ontology based on the cross-fertilization 
of HSI and AI principles and concepts to capture the complex multi-agent representations associated 
with human-AI teaming (Boy, 2019). A robust conceptual model in this regard will be able to develop 
and validate the role of each agent or sub-system (human and machine) and how authority is shared 
between them to achieve optimal results in decision-making. 

An essential focus of the metrics will be evaluating trust and collaboration factors (Boy et al., 
2022; Boy, 2023a). Trust is critical in shaping HSI and reflects a multifaceted concept influenced 
by competence, predictability, transparency, and reliability factors. Trust is often associated with 
perceiving, understanding, and projecting a situation to decide and act, and it relates to knowing 
who or what controls the system or situation (Boy, 2016; Boy, 2021b). In high-risk and dynamic 
environments, trust is a crucial element in enabling independent and interdependent decision-making 
across multi-agent systems (Schaefer et al., 2019). Atkinson (2012) has deconstructed the concept 
of “trust” into three areas: trustworthiness, which requires possessing the necessary and sufficient 
qualities needed for a person to trust (e.g., competence); usability, which requires the qualities of 
reliability to be manifested so that they can be observed or inferred, either directly or indirectly (e.g., 
behaviors, signals, communications, reference, reputation, etc.); and trusting, which is the process 
of becoming dependent (i.e., dependent on another agent for something of value). 

When there are few conflicts between agents, stable and consistent interactions between agents, both 
human and machine, foster trust-building. A sound reputation with consistent signals and behaviors 
increases trust, which is enhanced as interactions and outcomes become highly predictable and 
understandable. This way, trust is strongly associated with a system’s maturity level in consistently 
delivering satisfactory results with minimal inconvenience and transparency, making the decision-
making process more understandable to human controllers and operators (Boy, 2021b). Since trust in 
complex systems is generally based on familiarity, when adopting new human-AI systems, it becomes 
essential to determine the length of time necessary for users to become familiar with the system, its 
functions, limitations, etc. The more familiar that users are with a complex system, the better they 
will understand how to work with it as a partner and, by extension, trust or distrust its behavior and 
properties (Salas et al., 2008). 

Human-in-the-loop simulations can be highly effective in consolidating and accelerating the process 
of such familiarization for users of autonomous systems. Human-in-the-loop modeling and simulation 
tools have led to the development and growing use of ‘digital twins,’ which allow virtual representations 
of a system spanning its life cycle from inception to obsolescence. Digital twins are being developed 
across several domains, from applications relating to the operational maintenance of helicopter 
engines to remote operations using robotics (Camara Dit Pinto et al., 2021; Lorente et al., 2021). 
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Even considering the potential advantages of 
digital twins and simulated training, achieving 
proficient familiarity and a deep understanding of 
complex systems can take a long time for users. 
Despite decades of research on interpersonal 
trust in human teams, human-animal teams, 
and human-machine interaction, critical gaps 
remain in our understanding of trust, perception, 
and manipulation, among other areas, that are 
highly relevant to human-machine interaction. 
This challenge is compounded in the context of AI, which is giving rise to more autonomous machines 
that have not reached maturity from three critical perspectives: Technology Readiness Levels (TRL); 
Human Readiness Levels (HRL); and Organization Readiness Levels (ORL), the latter being expandable 
further into Societal Readiness Levels (SRL) (Endsley, 2015; Boy, 2021b; NASA, 2022). 

Alongside trust, cooperation, and collaboration represent two concepts closely related to human-AI 
teaming in emerging multi-agent systems in air power, such as Europe’s Future Combat Air System 
(FCAS), which envisions digital avatars and loyal wingmen to operate collaboratively alongside manned 
fighter aircraft. During the cooperation, each agent may have individual interests but works toward a 
common goal through aligning actions and efforts to achieve a shared objective, despite potentially 
differing interests. This concept is often encountered when multiple entities, such as team-based 
games or multi-agent systems in the military environment, must work together. In contrast, collaboration 
involves agents coming together with a common interest and a shared goal. Pooling their resources, 
knowledge, and skills to achieve that shared goal, cooperation is typically characterized by strong 
communication, mutual understanding, and joint decision-making. In an orchestra, for example, 
musicians collaborate to perform a symphony, ensuring that their actions are precisely coordinated 
through the conductor’s direction and the music scores (Boy, 2013a). 

Training for collaboration is essential as effective teamwork is imperative for any successful teaming 
model. Still, special attention needs to be focused on cultivating adaptive and agile behavior in agents 
through HSI-based training, simulation, and resilience testing. Further understanding is required 
concerning AI and the autonomy it can enable, such as its ability to make choices when unexpected 
situations occur. Teaching agents how to communicate efficiently, understand each other’s roles, and 
coordinate their actions to achieve desired outcomes is critical and can help build a better understanding 
of the autonomy that AI can enable human and machine fault tolerance and the ability of agents to make 
choices when unexpected situations occur. Progress here will necessarily demand solutions for shared 
mental or cognition models between agents, science-based authority allocation, ethics education 
and training, design and management for sustainability to emphasize stability, implementation, and 
governance, explainability of agent behavior, calibrating trust incrementally, human neutralization 
capability, communication protocols, and periodic evaluations to support continuous improvement.

Human-in-the-loop modeling and 
simulation tools have led to the 
development and growing use of ‘digital 
twins,’ which allow virtual representations 
of a system spanning its life cycle from 
inception to obsolescence.

“
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CONCLUSION: THE FUTURE DIRECTION 

The increasing importance of interconnectivity in current and emerging operational constructs for 
air and space power relies on a system of systems approach. For example, command and control 
(C2) are increasingly decentralized through computers: The digital cockpits of pilots in modern combat 
aircraft provide a human-centered integration of C2 systems to support distributed high-tempo 
operations (Boy, 2023b). However, fundamental challenges remain in human-AI teaming; model-
based HSI offers tremendous potential. Measuring and leveraging the performance of human-AI 
teaming is essential for facilitating continuous improvement and ensuring that a system of systems 
comprising humans and machines increasingly assisted by AI can perform at optimal levels. To 
address design gaps, it will be necessary to evolve from rigid automation to flexible autonomy, where 
autonomy becomes a human-machine concept (as illustrated in Figure 2.2). Systemically built-in 
flexibility, such as at the technological, human, or organizational levels, will allow operators to easily 
preserve business continuity during operations in unexpected situations by finding support from one 
or more partners (Boy, 2021a).

Figure 2.2: Associating Rigid Automation and Flexible Autonomy
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To make this possible, building a shared understanding of HSI among stakeholders is essential 
for standardizing integration principles, which result in system specifications emphasizing 
interoperability. Interoperability has traditionally been challenging to achieve due to systems 
being developed by different companies using their respective methodologies, standards, and 
intellectual property. Beyond this, certifying the design of models and systems for human-AI 
partnering will depend on the ability to evaluate their safety, reliability, and effectiveness. This 
can be achieved by establishing robust metrics to collect and analyze meaningful data relating to 
performance. Developing scenarios and dynamic agent-based human-in-the-loop simulations 
can enable a step-by-step discovery of emerging functions and structures of systems through 
activity analyses that inform future iterations and evolution (Boy et al., 2022). They will also help 
identify critical human factors and analyze their impact. On the other hand, improving policies 
for continuous participation is essential to deliver a circular economy leading to more useful 
and usable human-machine interfaces. The technical certification and validation of systems, 
regulatory compliance, and managing input and feedback from user experience are crucial, 
presenting a future direction for research and development.
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