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Abstract— Nowadays, human systems integration (HSI) 
requires expansion, considering the inclusion of artificial 
intelligence (AI) in most critical systems. Consequently, systems 
engineering and AI must be developed in concert with the new 
perspective of human-AI teaming (HAT). This article attacks 
this endeavor by considering human factors such as situation 
awareness, decision-making, and risk-taking. It raises issues of 
function allocation, design and operations flexibility, and 
incremental design of technology, organizations, and people’s 
competencies. More specifically, it brings the major issue of 
certification impossibility and the need for qualification of AI 
systems, shifting these systems from tools to partners. 
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I. INTRODUCTION 
Artificial intelligence (AI) [24] and human-AI teaming 

(HAT) [25] have been coined and investigated a long time 
ago. HAT [1] should be explored further from a human 
systems integration (HSI) perspective, specifically model-
based HSI. This paper attempts to integrate several pieces of 
work done in HSI toward this end [2,3,4,13,14,15,16]. HAT is 
closely associated with the concept of autonomy. 
Consequently, the term “Human Autonomy Teaming,” also 
known as HAT, is currently used in the defense sector [5]. The 
concept of autonomy requires further investigation and a more 
formal physical and cognitive systemic representation 
supporting more detailed and meaningful analysis, 
specifically on situation awareness issues [6], decision-
making, and risk-taking. A new question is: “To what extent 
should the machine be considered a tool or a partner?” 

HSI is defined as the intersection of Systems Engineering 
(SE), Human Factors and Ergonomics (HF/E), and 
Information Technology [9]. Along these lines and beyond the 
current trend of combining SE and AI [8], an even more vital 
need emerges to incorporate AI and HSI. Therefore, we need 
to examine HSI based on a consistent definition of a system 
where humans and machines can be considered together using 
a homogeneous representation that supports agent-oriented 
system modeling [13]. More specifically, HAT analysis, 
design, and evaluation require the development of an 
appropriate ontology based on HSI and AI principles and 
concepts, such as HSI-based systems and AI-based agents 
[4,7].  

This paper will raise control, responsibility, autonomy, 
and trust issues [10] in air and space power. AI allows the 
execution of tasks that usually require human intelligence, 
such as perception, conversation, and decision-making [11]. 
AI includes many technologies and applications, such as 
knowledge-based systems, vision, speech, natural language 
processing, robotics, machine learning, and planning. If 
machine autonomy is a contemporary trend, human autonomy 
remains a significant concern when people must solve 
problems in unexpected or unknown situations using 
appropriate human skills, knowledge, technologies, and 
organizational setups. Underlying concepts, methods, and 
tools are currently being developed by the FlexTech Chair 
[3,4], where we develop FlexTech functions (technology for 

flexibility), AI-based or not, to support problem-solving, 
whether in expected or unexpected situations.  

II. HUMAN SYSTEMS INTEGRATION 

A. Procedures, Automation, and Problem-Solving 
Procedures-following and automation monitoring are 

usually excellent solutions in expected situations (Fig. 1). 
Still, they can be counterproductive and even dangerous in 
unexpected situations that require flexibility, autonomy, more 
profound knowledge, and problem-solving skills [14]. We 
then need to analyze the automation-autonomy distinction to 
address this flexibility challenge. For a long time, we 
automated machines, often without considering the 
unexpected situations that were implicitly left to the end-users, 
who had no choice but to solve them, often without 
appropriate resources. It is time to address this gap in evolving 
from rigid automation to flexible autonomy, where autonomy 
has become a human-machine concept. Indeed, we have 
massively automated machines during the 20th century. 
However, AI-based automation, which leads to increasingly 
autonomous machines, still needs to mature and requires more 
fundamental and applied research efforts (e.g., concurrently 
addressing technology, human, and organizational readiness 
levels [4]). 

 
Fig. 1. Procedures, automation, and problem-solving: Rigid vs. Flexible.  

B. Human and Machine Systems of Systems Specifications 
In this context, it becomes relevant to consider an agent as 

an agency of agents [12], where agents are humans or 
machines increasingly equipped with artificial intelligence 
(AI) algorithms. Agents can identify a situation, decide, and 
plan appropriate actions. It is interesting to realize that multi-
agent representations developed in AI are very similar to 
systems of systems (SoS) designed in SE. Consequently, 
these AI and SE approaches must be cross-fertilized. Indeed, 
the ever-increasing interconnectivity makes such a multi-
agent/SoS approach even more necessary. 

Command and control (C2) systems are now integrated 
with user interfaces, and, more generally, interconnectivity 
has become a real support to agency operations requiring 
human-centered systemic integration [4]. At this point, 
defining what we mean by a system becomes crucial. Several 
definitions have been proposed. Most people think of a system 
as a machine. However, when doctors talk about the 
cardiovascular system, they are talking about a 
representation of a human organ that allows blood to 
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circulate throughout the body, not a machine in the 
mechanical sense. Social scientists talk about socio-cultural 
systems. Here again, they speak of representations [4]. 

Whenever new life-critical machines, such as human-
crewed or uncrewed aircraft or spacecraft, are developed, they 
must be certified to ensure safe, efficient, and comfortable 
operations. Therefore, establishing metrics to evaluate and 
validate them is crucial. HAT-dedicated metrics will be 
presented from the perspective of machines considered 
partners, specifically operational performance, trust, and 
collaboration. Although a possible future aviation system will 
illustrate the following development, we will discuss the role 
of humans and organizations within the scope of more generic 
life-critical systems based on the current PRODEC method 
developed [3,13,23], including authority sharing. PRODEC is 
a scenario-based design method combined with human-in-the-
loop simulations and activity analysis. The conclusion will 
review the recent HAT theoretical and practical results and 
open perspectives. 

III. FUNCTION ALLOCATION: LOOKING FOR FLEXIBILITY 

A. Automation, Interaction, and Augmentation 
There are three ways of implementing function allocation 
among humans and machines, associating design and 
operations-related processes [7]: substitution with 
automation, amplification with interaction, and speculation 
with augmentation.  

Automation functions have existed for a long time, based 
on automatic control theories (e.g., in aviation, autopilots that 
can follow a heading, a speed, an altitude, and so on; cruise 
control on automobiles). Skill-based human cognitive 
functions have been transferred to machines. The problem is 
that these functions, defined in specific contexts, lead to rigid 
automation (Fig. 1).  

Human-computer interaction functions could amplify 
various human cognitive functions, including human memory 
capacity, shortcuts, heavy calculations, and search algorithms 
that enable finding appropriate information in context, where 
context is incrementally learned by the machine from previous 
interactions, for example [3].  

Speculation is directly associated with augmentation at 
operations time. Engineers designed aircraft functions that 
provide flying capabilities to humans. Not only did we 
understand that thrust and lift can make us fly, but we also 
found the appropriate means of propulsion and lift. 

B. Evolution of Human-Machine Function Allocation 
It is essential to understand the evolution from HF/E to 

Human-Computer Interaction (HCI) to HSI communities in 
the light of the triptych (automation, interaction, 
augmentation). HF/E was born from problems that needed to 
be solved in industry after World War 2, where machines were 
essentially mechanical and incrementally automated. 
Automation became a real issue because people had to adapt 
to it. Substituting a human function for a machine function 
created new human functions that engineers did not 
necessarily anticipate. HF/E specialists had to help fix these 
issues. Automation increases safety, efficiency, and comfort 

 
1 www.nasa.gov/missions/apollo/apollo-13-the-successful-failure 

in well-defined operational contexts but also operational 
rigidity (Fig. 1). 

At the beginning of the 1980s, computers started to be 
used extensively, which created new issues related to HCI. A 
new community was designed to study these issues. People 
could do more things using computers because software 
amplified their capabilities. However, these new machine 
functions still needed to remove rigidity in operations. Indeed, 
machine functions were designed in specific contexts, even if 
they were highly interactive. It took a long time to realize that 
flexibility requires functions, such as the “undo” function, to 
solve problems without procedures. This type of function Is 
denoted “FlexTech.” [22] 

If an aircraft augments human capabilities, flying a fixed-
wing plane, for example, is far more rigid than what birds can 
do. Birds are, therefore, more flexible and autonomous than 
what people can do with an aircraft. This is due to their 
structure of structures (i.e., anatomy) and functions (e.g., 3D 
perception, feeling of the air). The symbiosis between these 
structures and functions provides them with appropriate flight 
capabilities.  

Consequently, more speculations should be carried out 
(e.g., stability as a crucial flight function). Quadcopters have 
four engines (i.e., agents) that ensure enhanced stability, 
providing pilots more operational flexibility and autonomy. 
This example shows that a well-articulated multi-agent 
function allocation is a solution for flexibility. 

IV. FROM RIGID AUTOMATION TO FLEXIBLE AUTONOMY 
During the last four decades, we have proved that 

operations procedures and automation can successfully 
support the control and management of life-critical systems. 
Automation is usually thought of as the automation of 
machine functions (Fig. 1), and operation procedures can be 
considered automation of people [7].  

Problems come when unexpected situations occur, and 
rigid assistance (i.e., procedures and automation) may no 
longer work because operations procedures and automation 
are out of their validity contexts. Human problem-solving is 
usually at stake. Instead of following procedures and 
monitoring automation, people need well-coordinated, multi-
agent expert support. The Apollo 13 successful failure1 is an 
excellent example of that. 

In addition, function allocation cannot be considered a 
static process. It is highly dynamic, and systems should be 
flexible enough to be modified incrementally. A good mastery 
of the tryptic Technology-Organizations-People denoted as 
the TOP model [2] and collective preparedness of the human 
and machine agents at stake will improve flexibility [3]. 

Technological, organizational, and human flexibility must 
be considered during design and operations. Design is an 
iterative process that requires many changes, considering the 
TOP model framework toward three perspectives: HSI, case-
based reasoning, machine learning, and visualization 
techniques that contribute to improving situation awareness. 

HSI involves leveraging individuals' and corporate 
accumulated experience and expertise within a system to 
enhance performance. Adjustable autonomy should be based 
on experience, acquired incrementally through many try-and-



© Guy A. Boy – Article submitted at IEEE ICHMS 2024 Special Session proposal on Adjustable Human-Autonomy Collaboration. 

__________________________________________________________________________________________
979-8-3503-1579-0/24/$31.00 ©2024 IEEE 

error activities. A positive experience is as necessary as a 
negative experience. If incidents and accidents are well 
documented and can serve as valuable data for learning, we 
should focus even more on positive experiences. These 
experiences should be stored in knowledge-based systems 
(i.e., repositories of structured knowledge to assist in decision-
making processes). 

Case-based reasoning [17] involves solving new problems 
based on solutions to similar past problems. These approaches 
can be highly effective in HSI scenarios, especially when 
combined with supervised machine-learning techniques to 
learn from historical data. Situation awareness refers to 
understanding elements in the environment within a volume 
of time and space, comprehending their meaning, and 
projecting their status shortly. Intelligent visualization 
techniques, often powered by deep learning algorithms, 
enhance situation awareness by presenting complex data 
comprehensibly to human operators. 

Machine Learning (ML) and, even more importantly, 
Deep Learning (DL) have become dominant over the last few 
years [21]. ML can be very interesting within our flexible 
autonomy endeavor. ML algorithms support eliciting patterns, 
information organization, anomalies, relationship detection, 
and projection making. They can also help fine-tune how 
autonomous systems improve task execution using 
appropriate metrics [7].  

Visualization techniques enable complex data to be better 
understood by people [18,19,20]. Indeed, becoming familiar 
with a complex system is a critical issue that appropriate static 
or dynamic visualizations can enhance. Visualization is at the 
heart of HAT [10]. 

HAT involves human and machine agents within an 
infrastructure that can be hierarchical (e.g., conventional 
army) or heterarchical (e.g., orchestra). The evolution of 
digital (especially AI) organizations drastically changed 
people’s jobs, going from old army hierarchies to 
heterarchical orchestra structures and functions [4,15], with 
musicians, some of them being conductors and composers. 
More formally, playing a symphony (i.e., a product), the 
orchestra organization requires five kinds of components: 

1. music theory that is the common language (i.e., a 
framework and vocabulary for collaborative work); 

2. scores produced and coordinated by composers (i.e., 
coordinated tasks to be executed); 

3. workflow coordinated by a conductor (i.e., system of 
systems activity); 

4. musicians performing the actual symphony (i.e., the 
actual system of systems); 

5. the symphony audience (i.e., product’s end users). 
 
Three transversal dimensions must be added to describe 

HAT interaction [2]: supervision of agents over other agents 
interacting with each other, mediation between agents by 
“mediating” agents, and cooperation among agents that learn 
from each other through interaction over time. 

On the human side,  

Autonomy should not be focused on technology only. In 
cooperation with AI, human autonomy is undoubtedly just as 
significant, if not more so. From the TOP model perspective 
[2], we will discuss the independence of designers, engineers, 

developers, certifiers, maintainers, operators or end-users, 
trainers, and dismantlers, to name a few. Sometimes, new 
technology may lead to people losing their jobs, or conversely, 
new jobs (i.e., functions) should be created. Therefore, a new 
set of people might be hired (i.e., a new structure should be 
made within the organization). People have their own human 
factors issues, such as fatigue, workload, physical and 
cognitive limitations, and creativity [2]. These are topics for 
HAT research. 

V. CURRENT H.A.T. DEVELOPMENTS 
We are currently working on the PRODEC method that 

supports the development and operations of sociotechnical 
multi-agent systems [23]. PRODEC is a scenario-based design 
method that enables eliciting emergent properties from task, 
activity, and function analyses, using human-in-the-loop 
simulation during the whole life cycle of a socio-technical 
system and, more specifically, at design time. Since humans 
and AI-enforced machines have physical and cognitive 
functions, PRODEC is very appropriate to identify and 
formalize these functions. 

This HAT approach has been and is currently tested on 
various projects and use cases, including the MOHICAN 
project [16], the management of a fleet of robots on an off-
shore oil-and-gas drilling platform, and a future combat air 
system. We currently learn on HAT from these laboratory and 
real-world experiences using PRODEC. 

CONCLUSION 
This paper was produced to support the IEEE ICHMS 

2024 Special Session on Adjustable Human-Autonomy 
Collaboration and encourage research and innovation that 
mixes HSI and AI toward technological solutions that help 
flexibility in operations. Flexible autonomy is mainly needed 
in abnormal situations and emergencies, where people must 
solve problems, often not anticipated, and speculate 
appropriate solutions. This is precisely where AI could be 
efficient and effective by supplying tools that augment 
people’s capabilities in problem-solving and judgment. 

Human-AI teaming (HAT) is sensitive to trust and 
collaboration [16] that directly impact operational 
performance, supporting safe, efficient, and comfortable 
work. This leads to testing HAT reliability, which results from 
the co-adaptation of people and machines (via designers and 
engineers, as well as trainers and accumulated experience).  

Human operators may accept some unreliable situations 
where the machine fails as long as safety, efficiency, and 
comfort costs are low (i.e., acceptable degraded modes of 
operations). However, when these costs become too high for 
them, the machine is just rejected. This states the problem of 
product maturity [4]. HAT maturity remains a research topic 
that deserves attention, as AI systems cannot explain what 
they do and learn, so they can be different from one day to the 
next. More specifically, AI-intensive machines cannot be 
considered tools but partners that require qualification tests, in 
the same way people are qualified for a job. In addition, HAT 
qualification will have to be continuous during the life cycle 
of a system. 

Along these lines, with increasing AI support, HSI should be 
based on a concurrent approach to cross-fertilizing 
technology, organizations, and people’s activities (i.e., based 
on the TOP model). This work is part of the research by the 
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FlexTech Chair at CentraleSupélec (Paris Saclay University) 
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