

Keynote

LIFE-CYCLED DIGITAL ENGINEERING: THE TANGIBILITY ISSUE

Professor Guy André Boy, Ph.D. FlexTech Chair Holder, CentraleSupélec & ESTIA

19th International Conference on **Product Lifecycle Management**

> Grenoble, France 11 July 2022

TANGIBILITY...

Physical tangibility e.g., l grab a pen

Figurative (or cognitive) tangibility e.g., I grab a concept

© Guy A. Boy – Digital Engineering & Tangibility

We inverted the hardware-software dependency
We are starting to consider unexpected events
We start to understand flexibility & autonomy better
We are no longer in the single agent-based engineering era
We are complexifying our sociotechnical world everyday
We are making human systems integration a discipline

WHY IS TANGIBILITY SO IMPORTANT TODAY?

I will now develop these six points...

© Guy A. Boy – Digital Engineering &. Tangibility

TANGIBILITY ISSUES EMERGE FROM VIRTUAL HUMAN-CENTERED DESIGN

FROM HARDWARE TO SOFTWARE

20th Century Automation & HCI

© Guy A. Boy – Digital Engineering &. Tangibility

FROM SOFTWARE TO HARDWARE

21th Century Tangibility & Flexibility

© Guy A. Boy – Digital Engineering &. Tangibility

FROM MEANS TO PURPOSE

TANGIBILITY: SYSTEMIC ATTRIBUTES

- Complexity \rightarrow separability, interconnectivity, collaboration, trust, ...
- Maturity \rightarrow TRLs & HRLs & ORLs
- Flexibility (design & operations) \rightarrow safety nodes, reversibility, FlexTech, ...
- Stability/Resilience \rightarrow passive vs. active, resilience, crisis management, ...
- Sustainability \rightarrow design rationale, knowledge management, ...

+ Social Factors

Shared situation awareness Cooperative decision-making Harmonized risk taking Trust and collaboration

TANGIBLE SOLUTIONS ARE REQUIRED TO HANDLE UNEXPECTED SITUATIONS

FROM RIGID AUTOMATION TO FLEXIBLE AUTONOMY

FLEXTECH

Design for Flexibility

What kind of support? technology

Edit View Insert Forma	at Tools
Undo Typing	жz
Repeat Typing	жY
Cut	ж×
Сору	жC
Paste	ж V
Paste Special	^
Paste and Match Formatting	V第分乙
Clear	>
Select All	жA
Find	>
Links	
Start Word Dictation	
Select Data	
Toggle Drawing	^%Z
Start Dictation	~~

APOLLO 13 CO₂...

FLEXTECH

Design for Flexibility

What kind of support? organization

... collaborative problem solving!

FLEXTECH

Design for Flexibility

What kind of support? competences

FLEXTECH

Technology

- Problem-solving tool support
- e.g., undo

Organization

- Problem-solving team
- E.g., Apollo 13

People

- Problem-solving competence
- e.g., creativity & experience

TANGIBILITY IS STRONGLY RELATED TO FLEXIBILITY

LIFE-CYCLED HUMAN SYSTEMS INTEGRATION

Technology-centered

HUMAN-CENTERED DESIGN OF A DIGITAL TWIN FOR HELICOPTER ENGINE MAINTENANCE

DIGITAL TWINS

Expanding HITLS

- During the whole life cycle
- "what if?"

Vivid documentation \rightarrow MBSE

- Integration of experience feedback
- Organizational memory

DTs as virtual assistants \rightarrow HAT

- Multi-agent collaboration
- Mediators for collaborative work

MBSE: Model-Based Systems Engineering HAT: Human Autonomy Teaming We inverted the hardware-software dependency
We are starting to consider unexpected events
We start to understand flexibility & autonomy better
We are no longer in the single agent-based engineering era
We are complexifying our sociotechnical world everyday
We are making human systems integration a discipline

WHY IS TANGIBILITY SO IMPORTANT TODAY?

I will now develop the last three points...

© Guy A. Boy – Digital Engineering &. Tangibility

TANGIBILITY REQUIRES AN APPROPRIATE SYSTEMIC ONTOLOGY

Single Agent System

Multi Agent System

WHAT IS A SYSTEM?

Systems include Humans and Machines...

© Guy A. Boy – Digital Engineering &. Tangibility

SYSTEM = FUNCTION + STRUCTURE

Shared situation awareness Speed & precision Resilience Trust & Collaboration

Interconnected Functions of Functions

Emergent Structures Emergent Functions

Overlapping Functions of Functions

Interconnected Structures of Structures

02/12/20

23 2

© Guy A. Boy – Digital Engineering &. Tangibility

SYSTEM = FUNCTION + STRUCTURE

© Guy A. Boy – Digital Engineering &. Tangibility

02/12/20

24 24

TALKING ABOUT TANGIBILITY IS MAKING SENSE OF COMPLEXITY

SEPARABILITY

SYSTEMIC INTERACTION MODELS... ... AND AUTHORITY SHARING

SCENARIO-BASED DESIGN + HUMAN-IN-THE-LOOP SIMULATION

What do we want to do?

Analysis of the existing so far... Anticipating possible futures...

Making a Multi-Agent Ontology

Becoming more generic...

© Guy A. Boy – Digital Engineering &. Tangibility

28 2

OFF-SHORE OIL & GAS MULTI-AGENT TELEROBOTIC SYSTEMS

Using PRODEC method combined with HITLS

© Guy A. Boy – Digital Engineering &. Tangibility

02/12/202

29 29

TOWARD A NEW DISCIPLINE...

HUMAN-SYSTEMS

From Virtual to Tangible

Guy André Boy

TOWARD MORE AUTONOMY & FLEXIBILITY...

INCREMENTAL ADAPTATION

 Technological adaptation MATURITY • Organizational adaptation • People adaptation People READINESS Human Centered LEVELS Design Technology Organizations

READINESS LEVELS

chaology

Human

HRL	Description
1	Relevant human capabilities, limitations, and basic human performance issues and risks identified
2	Human-focused concept of operations defined and human performance design principles established
3	Analyses of human operational, environmental, functional, cognitive, and physical needs completed, based on proof of concept
4	Modeling, part-task testing, and trade studies of user interface design concepts completed
5	User evaluation of prototypes in mission-relevant simulations completed to inform design
6	Human-system interfaces fully matured as influenced by human performance analyses, metrics, prototyping, and high-fidelity simulations
7	Human-system interfaces fully tested and verified in operational environment with system hardware and software and representative users
8	Total human-system performance fully tested, validated, and approved in mission operations, using completed system hardware and software and representative users
9	System successfully used in operations across the operational envelope with systematic monitoring of human-system performance

Organizations

ORL-0	First principles where potential organizational models are explored.
ORL-1	Goal-oriented research that requires making choices from first principles to practical fully digital organizational setups
ORL-2	Proof of principle development, and active R&D is started in a virtual environment
ORL-3	Virtual agile organizational prototype development and first HITLS (virtual HCD)
ORL-4	Proof of organizational concept development using concrete scenario-based design from fully virtual to more tangible environments
ORL-5	Assessing organization capability in terms of authority sharing (responsibility, accountability and control), trust, collaboration and coordination, for example
ORL-6	Real-world use-case tests in a wider variety of situations - tangibilization continues
ORL-7	Practical integration with respect to criteria such as safety, efficiency and comfort, at various levels of granularity of the organization – tangibilization continues
ORL-8	Readiness for effective implementation on a real site (fully tangible) based on personnel feedback for deployment approval
ORL-9	Deployment involving both personnel and real machines

CONCLUDING...

Awareness of the various possible contexts! scenarios human-in-the-loop simulations elicitation of emergent cognitive functions

Scenario-based design → solid conceptual models

Orchestra Model pour design, evaluation and operations Music theory → common framework (interaction mode Composers → scores = contracts + coordination Conductors → dynamic re-allocation Musicians → competence + engagement + cooperation Audience → constant communication and education

A FEW TAKE-AWAYS

- We live in a digital world \rightarrow Tangibility is a crucial contemporary issue
- Single-agent ergonomics is not enough \rightarrow Socio-ergonomics
- Human-machine teaming → What new human roles?
- Rigid automation is what we know \rightarrow Flexible autonomy is what we need to make
- How do we deal with the unexpected? \rightarrow Problem-solving support
- From means to purpose (people adapt) \rightarrow From purpose to means (machines adapt)
- Collaborative work requires **Openness**, **Education**, **Empathy** and **Enthusiasm**!

